Kig Python Scripting API Documentation

Circle Class Reference

An Object representing a circle. More...

Inheritance diagram for Circle:

Inheritance graph
[legend]
Collaboration diagram for Circle:

Collaboration graph
[legend]
List of all members.

Public Member Functions

 Circle (const Coordinate &center, double radius)
 Construct a Circle with a given center and radius.
Circlecopy () const
 Returns a copy of this Object.
Objecttransform (const Transformation &) const
 Return this Object, transformed by the transformation t.
bool valid () const
 Returns true if this is a valid Object.
const ObjectTypetype () const
 Returns the lowermost ObjectType that this object is an instantiation of.
const Coordinate center () const
 Return the center of this circle.
double radius () const
 Return the radius of this circle.
double squareRadius () const
 Return the square radius of this circle.
double surface () const
 Return the surface of this circle.
double circumference () const
 Return the circumference of this circle.
int conicType () const
 Always returns 1, since a circle always is an ellipse.
const ConicCartesianData cartesianData () const
 Return the cartesian representation of this conic.
const ConicPolarData polarData () const
 Return the polar representation of this conic.
Coordinate focus1 () const
 The first focus of a circle is simply its center.
Coordinate focus2 () const
 The second focus of a circle is simply its center.
QString cartesianEquationString (const KigDocument &w) const
 Return a string containing the cartesian equation of this circle.
QString simplyCartesianEquationString (const KigDocument &w) const
 Return a string containing the cartesian equation of this circle.
QString polarEquationString (const KigDocument &w) const
 Return a string containing the polar equation of this circle.
bool equals (const Object &rhs) const
 Returns true if this Object is equal to rhs.

Static Public Member Functions

static const ObjectTypestype ()
 Returns the ObjectType representing the Circle type.

Detailed Description

An Object representing a circle.

This class is a subclass of Conic, ensuring that a circle can be used as a conic.


Member Function Documentation

QString Circle::cartesianEquationString const KigDocument &  w  )  const [virtual]
 

Return a string containing the cartesian equation of this circle.

This will be of the form "x^2 + y^2 + a x + b y + c = 0"

Reimplemented from Conic.

Circle* Circle::copy  )  const [virtual]
 

Returns a copy of this Object.

The copy is an exact copy. Changes to the copy don't affect the original.

Implements Curve.

bool Circle::equals const Object rhs  )  const [virtual]
 

Returns true if this Object is equal to rhs.

This function checks whether rhs is of the same Object type, and whether it contains the same data as this Object.

Reimplemented from Conic.

QString Circle::polarEquationString const KigDocument &  w  )  const [virtual]
 

Return a string containing the polar equation of this circle.

This will be of the form "rho = r [centered at p]"

Reimplemented from Conic.

QString Circle::simplyCartesianEquationString const KigDocument &  w  )  const
 

Return a string containing the cartesian equation of this circle.

This will be of the form "( x - x0 )^2 + ( y - y0 )^2 = r^2"

double Circle::squareRadius  )  const
 

Return the square radius of this circle.

Use this in preference to sqr( radius() ).

static const ObjectType* Circle::stype  )  [static]
 

Returns the ObjectType representing the Circle type.

Reimplemented from Conic.

const ObjectType* Circle::type  )  const [virtual]
 

Returns the lowermost ObjectType that this object is an instantiation of.

E.g. if you want to get a string containing the internal name of the type of an object, you can do:

 tn = object.type().internalName()

Reimplemented from Conic.

bool Circle::valid  )  const
 

Returns true if this is a valid Object.

If you want to return an invalid Object, you should return an InvalidObject instance.

Reimplemented from Conic.

KDE Logo
This file is part of the documentation for kdelibs 0.10.5.
Documentation copyright © 1996-2002 the KDE developers.
Generated on Mon Aug 15 23:01:22 2005 by doxygen 1.4.2 written by Dimitri van Heesch, © 1997-2001